Article 2318

Title of the article

PRESENCE AND UNICITY OF SOLUTION OF THE SCALAR PROBLEM OF DIFFRACTION BY A VOLUMETRIC
INHOMOGENEOUS SOLID WITH A PIECE-WISE SMOOTH REFRACTIVE INDEX 

Authors

Tsupak Aleksey Aleksandrovich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: mmm@pnzgu.ru 

Index UDK

517.968, 517.983 

DOI

10.21685/2072-3040-2018-3-2 

Abstract

Background. The aim of the present paper is investigation of the direct scalar problem of plane wave scattering by a volumetric inhomogeneous solid, characterized by piece-wise smooth refractive index.
Material and methods. The considered scattering problem is considered in the semiclassical formulation; the scattering problem is reduced to a weakly singular Fredholm integral equation of the second kind.
Results. The semiclassical formulation of the scattering problem is proposed; the uniqueness theorem is proved for the scattering problem in the original problem is reduced to the Lippmann-Schwinger integral equation; equivalency between the integral equation of the second kind and the boundary value problem is proved.
Conclusions. The obtained results on existence of a unique solution to the problem and its continuity obtained in the present article can be used for theoretical investigation of inverse problems of diffraction by compound volumetric obstacles.

Key words

diffraction problem, quasi-classical solutions, integral equations, existence and uniqueness of a solution 

 Download PDF
References

1. Tsupak A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2014, no. 1 (29), pp. 30–38.
2. Smirnov Yu. G., Tsupak A. A. Differentsial'nye uravneniya [Differential equations]. 2015, vol. 51, no. 9, pp. 1234–1244.
3. Evstigneev R. O., Medvedik M. Yu., Smirnov Yu. G., Tsupak A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2017, no. 4 (44), pp. 3–17.
4. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. Berlin, Heidelberg: Springer-Verlag, 2013, 406 p.
5. Agranovich M. S. Sobolevskie prostranstva, ikh obobshcheniya i ellipticheskie zadachi v oblastyakh s gladkoy i lipshitsevoy granitsey [Sobolev spaces, their generalizations and elliptic problems in areas with smooth and Lipschitz boundaries]. Moscow:
MTsNMO, 2013, 379 p.
6. Tribel' Kh. Teoriya interpolyatsii. Funktsional'nye prostranstva. Differentsial'nye operatory [The interpolation theory. Functional spaces. Differential operators]. Moscow: Mir, 1980, 664 p.
7. Teylor M. Psevdodifferentsial'nye operatory [Pseudodifferential operators]. Moscow: Mir, 1985, 468 p.
8. Banjai L. Boundary element methods. Zurich, 2007.
9. Vladimirov V. S. Uravneniya matematicheskoy fiziki: ucheb. dlya vuzov [Euations of mathematical physics: textbook for universities]. Moscow: Nauka, 1981, 512 p.

 

Дата создания: 18.03.2019 09:42
Дата обновления: 18.03.2019 10:35